【克罗狄斯·托勒密做什么的】
克罗狄斯·托勒密
克罗狄斯·托勒密(古希腊语:Κλα_διο_Πτολεμα_ο_;拉丁语:ClaudiusPtolemaeus,约90年—168年),是希腊数学家,天文学家,地理学家和占星家。他住在亚历山大,他有一个拉丁名,有几个历史学家认为这暗示他也是罗马公民。他引用希腊哲学家的话,并使用巴比伦的观测结果和巴比伦的月球理论。14世纪的天文学家西奥多·梅利特尼茨说他的出生地是希腊城市托勒梅斯Hermiou(希腊语:Πτολεμα__“Ερμε_ου)在Thebaid(希腊语:Θηβα_δα)。但是年代过于久远,并且没有其他证据可以证实或矛盾。他在公元168年左右死于亚历山大。
托勒密写了几篇科学论文,其中三篇对后来的拜占庭,伊斯兰和西欧科学很重要。第一个是现在被称为Almagest的天文论文(即《天文学大成》),尽管它最初被称为《数学论文》(Mαθηματικ_Σ_νταξι_,MathēmatikēSyntaxis),然后又被称为《伟大论文》(_Μεγ_ληΣ_tτταξη_,HMegálē)又。第二个是地理,这是对希腊罗马人地理知识的全面讨论。第三是占星论论文,他试图使他的宇宙模型适应当时的亚里士多德自然哲学。这有时被称为Apotelesmatika(_ποτελεσματικ_),但更多的俗称占星四书希腊语(Τετρ_βιβλο_)意为“四书”或拉丁语Quadripartitum。
中文名:克罗狄斯·托勒密
外文名:ClaudiusPtolemy
国籍:古罗马帝国
民族:希腊人
出生地:埃及托勒马达伊
出生日期:公元90年
逝世日期:公元168年
职业:数学家,天文学家,地理学家,占星家
主要成就:“地心说”的集大成者
代表作品:《天文学大成》、《地理学》、《天文集》和《光学》
人物简介
克罗狄斯·托勒密(ClaudiusPtolemaeus,)“地心说”的集大成者,生于埃及,父母都是希腊人。公元127年,年轻的托勒密被送到亚历山大去求学。在那里,他阅读了不少的书籍,并且学会了天文测量和大地测量。他曾长期住在亚历山大城,直到151年。有关他的生平,史书上少有记载。
约公元90年生于埃及的托勒马达伊,曾在亚历山大城居住和工作,168年去世。一生著述甚多。其中《天文学大成》(13卷),是根据喜帕恰斯的研究成果写成的一部西方古典天文学全书,主要论述宇宙的地心体系,认为地球居于中心,日、月、行星和恒星围绕着它运行。此书在中世纪被尊为天文学的标准著作,直到16世纪中哥白尼的日心说发表,地心说才被推翻。另一部重要著作《地理学指南》(8卷)是古希腊有关数理地理知识的总结,主要以马里努斯的工作为基础,参考亚历山大城图书馆的资料撰成。第1卷为一般理论概述,阐述了他的地理学体系,修正了马里努斯的制图方法。第2卷至第7卷列有欧、亚、非三大洲8100处地点位置的一览表,并采用喜帕恰斯所建立的纬度和经度网,把圆周分为360份,给每个地点都注明经纬度坐标。第8卷由27幅世界地图和26幅局部区域图组成,以后曾多次刊印,称为《托勒密地图》。
托勒密认为地理学是对地球整个已知地区及与之有关的一切事物作线性描述,即绘制图形,并用地名和测量一览表代替地理描述。他在《地理学指南》中采用了波西东尼斯错误的地球周长数字,又在绘制陆地向东延伸中增加了误差。把有人居住的世界想象为一片连续不断的陆块,中间包围着一些海盆,并在地图上表明:印度洋的南面还存在一块未知的南方大陆(见古希腊罗马地理学)。直到18世纪英国探险家J.库克的探险航行,才消除这个错误。他在《地理学指南》中还提出了两种新的地图投影:圆锥投影和球面投影。
生平探究
127年到151年,他在亚历山大城进行天文观测。关于托勒密的生平,至今所知甚少。最主要的资料来自他传世著作中的有关记载,其次是罗马帝国时代和拜占廷时代著作家们传述的一些说法——通常颇为可疑。在托勒密最重要的著作《至大论》(Almagest)(《天文学大成》的古阿拉伯翻译版本)中,记载着一些他本人所作的天文观测,这是确定他生活年代、工作地点的最可靠的资料。见于《至大论》书中的托勒密天文观测记录,最早的日期为公元127年3月26日,最晚的日期为141年2月2日。由此可知托勒密曾活动于罗马帝国皇帝哈德良(Hadrian,公元117—138年在位)和安东尼(Antoninus,公元138—161年在位)两帝时代。《至大论》是托勒密早年的作品,此后他还写了许多著作,由这些著作推断,托勒密在哈德良皇帝时代已很活跃,而且他一直活到马可·奥勒留(MarcusAurlius,公元161—180年在位)皇帝时代。
由托勒密留下的观测记录来看,他的所有天文观测都是在埃及(当时在罗马帝国统治之下)的亚历山大城(Alexandria,今埃及亚历山大省的省会)。有一种说法,认为他出生于上埃及的托勒密城(Ptolemais,今埃及的图勒迈塞),这可能是正确的,然而此说出于后世(晚至约1360年),且无旁证。
托勒密的姓名中,保存着一些信息,可供推测。Ptolemaeus表明他是埃及居民,而祖上是希腊人或希腊化了的某族人;Claudius表明他拥有罗马公民权,这很可能是罗马皇帝克劳狄乌斯(Claudius,公元41—54年在位)或尼禄(Nero,公元54—68年在位)赠与他祖上的。
托勒密的著作集古希腊天文学之大城,但是对于他个人的师承,迄今几乎一无所知。《至大论》中曾使用了塞翁(Theon)的行星观测资料,有人认为塞翁可能是他的老师,但这仅是猜测而已。托勒密的不少著作题赠给一个不知谁何的赛鲁斯(Syrus)。还有人认为泰尔的马里努斯(MarinusofTyre)是托勒密的老师,托勒密在《地理学》(Gography)一书中使用并修订了马里努斯的不少资料。所有这些情况都还不足以确定托勒密的师承。
学术观点
天文学
在古老的宇宙观中,人们把天看成是一个盖子,地是一块平板,平板就由柱子支撑着。
在公元前四到三世纪,对于天体的运动,希腊人有两种不同的看法:一种以欧多克斯为代表,他从几何的角度解释天体的运动,把天上复杂的周期现象,分解为若干个简单的周期运动;他又给每一种简单的周期运动指定一个圆周轨道,或者是一个球形的壳层,他认为天体都在以地球为中心的圆周上做匀速圆周运动,并且用二十七个球层来解释天体的运动,到了亚里士多德时,又将球层增加到五十六个。另一种以阿利斯塔克为代表,他认为地球每天在自己的轴上自转,每年沿圆周轨道绕日一周,太阳和恒星都是不动的,而行星则以太阳为中心沿圆周运动。但阿利斯塔克的见解当时没有人表示理解或接受,因为这与人们肉眼看到的表观景象不同。
托勒密于公元二世纪,提出了自己的宇宙结构学说,即“地心说”。其实,地心说是亚里士多德的首创,他认为宇宙的运动是由上帝推动的。他说,宇宙是一个有限的球体,分为天地两层,地球位于宇宙中心,所以日月围绕地球运行,物体总是落向地面。地球之外有9个等距天层,由里到外的排列次序是:月球天、水星天、金星天、太阳天、火星天、木星天、土星天、恒星天和原动力天,此外空无一物。各个天层自己不会动,上帝推动了恒星天层,恒星天层才带动了所有的天层运动。人居住的地球,静静地屹立在宇宙的中心。托勒密全面继承了亚里士多德的地心说,并利用前人积累和他自己长期观测得到的数据,写成了8卷本的《伟大论》。在书中,他把亚里士多德的9层天扩大为11层,把原动力天改为晶莹天,又往外添加了最高天和净火天。托勒密设想,各行星都绕着一个较小的圆周上运动,而每个圆的圆心则在以地球为中心的圆周上运动。他把绕地球的那个圆叫“均轮”,每个小圆叫“本轮”。同时假设地球并不恰好在均轮的中心,而偏开一定的距离,均轮是一些偏心圆;日月行星除作上述轨道运行外,还与众恒星一起,每天绕地球转动一周。托勒密这个不反映宇宙实际结构的数学图景,却较为完满的解释了当时观测到的行星运动情况,并取得了航海上的实用价值,从而被人们广为信奉。
托勒密的天体模型之所以能够流行千年,是有它的优点和历史原因的。它的主要特点是:
1.绕着某一中心的匀角速运动,符合当时占主导思想的柏拉图的假设,也适合于亚里士多德的物理学,易于被接受。
2.用几种圆周轨道不同的组合预言了行星的运动位置,与实际相差很小,相比以前的体系有所改进,还能解释行星的亮度变化。
3.地球不动的说法,对当时人们的生活是令人安慰的假设,也符合基督教信仰。
在当时的历史条件下,托勒密提出的行星体系学说,是具有进步意义的。首先,它肯定了大地是一个悬空着的没有支柱的球体。其次,从恒星天体上区分出行星和日月是离我们较近的一群天体,这是把太阳系从众星中识别出来的关键性一步。
托勒密本人声称他的体系并不具有物理的真实性,而只是一个计算天体位置的数学方案。至于教会利用和维护地心说,那是托勒密死后一千多年的事情了。教会之所以维护地心说,只是想歪曲它以证明教义中描绘的天堂人间地狱的图象,如果编纂教义时流行着别的什么学说,说不定教会也会加以利用的。所以,托勒密的宇宙学说同宗教本来并没有什么必然的联系。
托勒密的天文学著作经阿拉伯学者之手而重为欧洲所知之后,又在欧洲保持了长时间的影响力,至少延续到16世纪。在此之前,没有任何西方的星历表不是按托勒密理论推算出来的。虽然星历表的精确程度不断有所提高,但由于托勒密所使用的古希腊本轮_均轮系统具有类似级数展开的功能,即为了增加推算的精确度,可以在本轮上再加一个小轮,让此小轮之心在本轮上绕行,而让天体在小轮上绕行。只要适当调诸轮的半径、绕行方向和速度,即可达到要求。从理论上说,小轮可以不断增加,以求得更高的精度,有些天文学家正是这样做的。但其缺点也是显而易见的,那就是过于繁琐。之后哥白尼在《天体运行论》中放弃了这种表示,改用了更为简洁的日心说。
地理学
除了在天文学方面的造诣,托勒密在地理学上也做出了出色的成就。他认为,地理学的研究对象应为整个地球,主要研究其形状、大小、经纬度的测定以及地图投影的方法等。他制造了测量经纬度用的类似浑天仪的仪器(星盘)和后来驰名欧洲的角距测量仪。托勒密有地理学著作八卷,其中六卷都是用经纬度标明的地点位置表。他的多数地点位置好像都是根据他的本初子午线和用弧度来表现的平纬圈之间的距离来计算的,因为他的经度没有一个是从天文学上测定的,只有少数纬度是这样测定的。托勒密采用了波昔东尼斯测定的地球周长的较小数值,这就使得他所有用弧度表现的陆向距离都夸大了,因为他把每一弧度的距离定为五百希腊里,而不是六百希腊里。这样一来,从欧洲到亚洲横贯大西洋的洋面距离,看上去就比埃拉托斯特尼的计算值小得多,这项计算最后还导致了哥伦布从西面驶往亚洲的企图。托勒密对世界情况比他的前辈熟悉得多,埃拉托斯特尼的地图东面只到印度的恒河为止,但是托勒密知道有马来半岛和“蚕丝之国”,即中国。
其他
在数学方面,他用圆周运动组合解释了天体视动,这在当时被认为是绝对准确的。他还论证了四边形的特性,即有名的托勒密定理。他对光学也作过研究,认为光线在折射时入射角与折射角成正比关系。
人物评价
在讨论托勒密的历史功绩及影响时,不能不先谈到一些很容易使人误入歧途的成见。这些成见并非学术研究所得出的成果,而是与某些特定时期的宣传活动密切结合在一起。因而广泛流传,其中比较重要的有如下两种。
第一种成见,是将托勒密看成只是一些古代科学文献的编辑者,由此引申开去,就自然会有诸如《至大论》不过袭自希帕恰斯、《地理学》只是马里努斯著作的翻版之类的偏激之论。这种成见的发端,据研究很可能是19世纪初期的法国数学家、天文学史家J·B·德朗布尔(Delambre)的《古代天文学史》(HistoiredeI’astronomieancienne)一书,这种看法早已被学者们的研究所否定,但在一些非学术的读物中有时仍可见到。
第二种成见,是将托勒密与亚里士多德(Aristotle)两人不同的宇宙体系混为一谈,进而视之为阻碍天文学发展的历史罪人。在当代科学史著述中,以李约瑟(J.Needham)“亚里士多德和托勒密僵硬的同心水晶球概念,曾束缚欧洲天文学思想一千多年”的说法为代表,至今仍在许多中文著作中被反复援引。而这种说法其实明显违背了历史事实。亚里士多德确实主张一种同心叠套的水晶球(crystallinespheres)宇宙体系,但托勒密在他的著作中完全没有采纳这种宇宙体系,他也从未表示他赞同这种体系。另一方面,主要由希腊_阿拉伯学者保存、传述下来的亚里士多德学说,直到13世纪仍被罗马教会视为异端,多次禁止在大学里讲授。因此,无论是托勒密还是亚里士多德,都根本不可能“束缚欧洲天文学思想一千多年”,至1323年,教皇宣布托马斯·阿奎那(T.Aquinas)为“圣徒”,阿奎那庞大的经院哲学体系被教会官方认可,成为钦定学说。这套学说是阿奎那与其师大阿尔伯图斯(AlbertusMagnus)将亚里士多德学说与基督教神学全盘结合而成。在论证水晶球宇宙体系时,阿奎那曾引用托勒密的著作来论证地心、地静之说。此后亚里士多德的水晶球宇宙体确实束缚了欧洲天文学思想约二三百年,但这显然无法构成托勒密的任何罪状。
托勒密的《至大论》,在他身后不久就成为古代西方世界学习天文学的标准教材。公元4世纪就出现了帕普斯(Pappus)的评注本文学和亚6历山大城的塞翁(TheonofAlexandria)的评注本。约在公元800年出现阿拉伯文译本。随后出现更完善的译本,它们与阿拔斯王朝的哈里发阿尔马蒙(Al_Ma’mun)对天文学的大力赞助密切联系在一起。1175年,出现了克雷莫纳的杰拉尔德(GerardofCremona)从阿拉伯文译的拉丁文译本,《至大论》开始重新为西欧学者所了解。在此之前不久,1160年左右还有一个从希腊文本译出的拉丁文译本出现在西西里,但可能不太为人所知。这些译本,连同来自阿拉伯一些以《至大论》为基础的新论著,在13世纪大大提高了西方天文学的水准,而在此前漫长的中世纪时期,西方世界的天文学进展主要出现在阿拉伯世界;然而阿拉伯天文学家更是大大受益于托勒密的天文学著作。
著作概览
托勒密著有四本重要著作:《天文学大成》(Almagest)、《地理学指南》(Geography)、《天文集》(Tetrabiblos)和《光学》(Optics)。此外,尚有年代学和占星学方面的著作等。
天文学大成
托勒密总结了希腊古天文学的成就,写成《天文学大成》十三卷。其中确定了一年的持续时间,编制了星表,说明旋进、折射引起的修正,给出日月食的计算方法等。他利用希腊天文学家们特别是喜帕恰斯(Hipparchus,又译伊巴谷)的大量观测与研究成果,把各种用偏心圆或小轮体系解释天体运动的地心学说给以系统化的论证,后世遂把这种地心体系冠以他的名字,称为托勒密地心体系。这部巨著是当时天文学的全书,直到开普勒的时代,都是天文学家的必读书籍。
《天文学大成》——500年的希腊天文学和宇宙学思想的顶峰——统治了天文界长达13个世纪。这样一本知识上参差交错且复杂的著作,不是单独一个人所能完成的。托勒密依靠了他的先驱者,特别是喜帕恰斯,这一点是无须掩盖的。他面对的基本问题是:在假设宇宙是以地球为中心的、以及所有天体以均匀的速度按完全圆形的轨道饶转的前提下,试图解释天体的运动。因为实际天体以变速度按椭圆轨道饶地球以外的中心运动,为了维护原来的基本假设,就要考虑某些非常复杂的几何形状。托勒密使用了3种复杂的原始设想:本轮、偏心圆和均轮。他能对火星、金星和水星等等的轨道分别给出合理的描述,但是如果把它们放在一个模型中,那么它们的尺度和周期将发生冲突。然而,无论这个体系存在着怎样的缺点,它还是流行了1300年之久,直到15世纪才被哥白尼推翻。
地理学指南
托勒密著有《地理学指南》八卷,是他所绘的世界地图的说明书,其中也讨论到天文学原则。
在《地理学指南》一书中,托勒密充分地解释了怎样从数学上确定纬度和经度线。然而,没有一条经线是用天文学方法确定的,仅仅少数的纬度线是这样计算的。他将陆上测量的距离归算为度,就在这无把握的网格上定出地区的位置。海面上的距离,简直是猜测出来的。他把加那利群岛放到它们真正位置以东7°去了,因而整个的网格定位只能是错误的。《地理学指南》对西方世界观的影响几乎也像《天文学大成》一样巨大和持久。
《地理学指南》一书在9世纪初叶便有了阿拉伯译本,书中关于伊斯兰帝国疆域内各地记载中的不准确这处,很快被发现并代之以更准确的记述,原初的阿拉伯文译本已经佚失,但此书在伊斯兰地理学中的直接与间接影响是值得注意的。《地理学指南》约在1406年出现由J.安杰勒斯(Angelus)从希腊文本译出的拉丁文译本。因为此书即使在当时(在它问世后1200年!)仍是对已知世界总的地理情况的最佳指南,所以很快流行起来。直到16世纪,许多制图学在16世纪的进展提供了强大的刺激。托勒密的投影方受到非议,由此导致各种新投影法的问世。《地理学》中的第一种投影法在墨卡托(Mercator)1554年的欧洲地图中受到非议,第二种投影法从1511年起受到更多的批评。然而无论如何,托勒密的《地理学指南》为后人提供了世上最早的有数学依据的地图投影法。
现代学者的详细研究表明:C.哥伦布(Columbus,1451-1506)在开始在他那改变人类历史的远航之前,至少曾细心阅读过5本书,其中之一就是托勒密的《地理学指南》,而其余4本与此不是同类著作,因此可知哥伦布的地理思想主要来自托勒密。托勒密标出的亚洲位置比它实际的更近(向西),与哥伦布同时代的地图制造者继承了他的错误观点,否则哥伦布也许就不会航行了。哥伦布相信通过一条较短的渡海航线,就可以到达亚洲大陆的东海岸,结果他在他设想的亚洲东岸位置上发现了美洲新大陆——尽管他本人直到去世时仍认为他发现的正是托勒密地图上所绘的亚洲大陆。
光学
托勒密著有《光学》五卷,其中第一卷讲述眼与光的关系,第二卷说明可见条件、双眼效应,第三卷讲平面镜与曲面镜的反射及太阳中午与早晚的视径大小问题,第五卷试图找出折射定律,并描述了他的实验,讨论了大气折射现象。
著作清单
【托勒密认为月球如何运动!!速求!!】
托勒密于公元二世纪,提出了自己的宇宙结构学说,即“地心说”。他认为宇宙的运动是由上帝推动的。他说,宇宙是一个有限的球体,分为天地两层,地球位于宇宙中心,所以日月围绕地球运行,物体总是落向地面。地球之外有9个等距天层,由里到外的排列次序是:月球天、水星天、金星天、太阳天、火星天、木星天、土星天、恒星天和原动力天,此外空无一物。各个天层自己不会动,上帝推动了恒星天层,恒星天层才带动了所有的天层运动。
人居住的地球,静静地屹立在宇宙的中心。托勒密利用前人积累和他自己长期观测得到的数据,写成了8卷本的《伟大论》。在书中,他把9层天扩大为11层,把原动力天改为晶莹天,又往外添加了最高天和净火天。托勒密设想,各行星都绕着一个较小的圆周上运动,而每个圆的圆心则在以地球为中心的圆周上运动。他把绕地球的那个圆叫“均轮”,每个小圆叫“本轮”。同时假设地球并不恰好在均轮的中心,而偏开一定的距离,均轮是一些偏心圆;日月行星除作上述轨道运行外,还与众恒星一起,每天绕地球转动一周。托勒密这个不反映宇宙实际结构的数学图景,却较为完满的解释了当时观测到的行星运动情况,并取得了航海上的实用价值,从而被人们广为信奉。
托勒密的天文学著作经阿拉伯学者之手而重为欧洲所知之后,又在欧洲保持了长时间的影响力,至少延续到16世纪。在此之前,没有任何西方的星历表不是按托勒密理论推算出来的。虽然星历表的精确程度不断有所提高,但由于托勒密所使用的古希腊本轮–均轮系统具有类似级数展开的功能,即为了增加推算的精确度,可以在本轮上再加一个小轮,让此小轮之心在本轮上绕行,而让天体在小轮上绕行。只要适当调诸轮的半径、绕行方向和速度,即可达到要求。从理论上说,小轮可以不断增加,以求得更高的精度,有些天文学家正是这样做的,关于小轮体系的繁琐,是许多宣传性读物中经常谈到的话题,这也成为托勒密的罪状之一,但这在很大程度上是错误的。姑以被誉为“简洁”的哥白尼体系为例,在《天体运行论》(DeRevolutionibus)中,哥白尼仍使用小轮和偏心圆达34个之多(地球3个,月球4个,水星7个,金星、火星、木星和土星各5个
【“太空轨道”计划:十八般兵器悉数拿出,究竟为科学还是为监视】
“太空轨道”计划
ProjectSpaceTrack
机密
美国空军
1958年12月-
建立跟踪国内外所有人造地球卫星和空间探测器的系统
1957年10月4日,苏联“斯普特尼克”1号(SputnikI)人造卫星发射,举世震惊,而作为冷战对手的美国更是沮丧之际,因为又被对手甩开了。
11月29日,两名德国侨民来自普鲁士的G·R·米扎伊卡博士和来自柏林的埃伯哈特·W·沃尔博士,组成了“收获月球”计划(ProjectHarvestMoon),两位科学家都有天文学背景,并且沃尔博士的博士学位是气象学。这使美国在极短时间内重新燃起了斗志。
“收获月球”计划坐落在美国马萨诸塞州劳伦斯·G·汉斯科姆空军研究中心地球物理研究局的1535号楼。
“收获月球”计划的任务是跟踪和计算所有人造地球卫星的轨道,包括美国和苏联的有效载荷、助推火箭和碎片。
第一个主要的跟踪工作,是1957年11月3日发射的载有小狗“莱卡”的“斯普特尼克”2号(SputnikII)。这也是“收获月球”计划前的最后一次任务。
从1958年12月起,“太空轨道”一直是国家空间监视控制的临时中心。“收获月球”计划的行动代号也过渡到“太空轨道”,这也意味着行动正式开始及核心的微妙转变。
1959年1月2日,苏联发射“露娜”1号(也译作“月球”1号),“收获月球”计划也开始跟踪太空探测器。这标志着“太空轨道”计划首次开始任务。
2月,美国成立了“496L电子支持系统项目办公室”。
12月,“太空轨道””计划收归国防部高级研究计划局的领导下,办公室安置在马萨诸塞州沃尔瑟姆市,由小维克多·A·切尔巴克上校领导。“太空轨道”计划还承担了额外的责任,即开发用于军事监视卫星的技术和设备,继续发展“太空轨道”是这项努力的一个组成部分。
1959年12月,“太空轨道”任务被移到一座新的建筑物,国家空间监视控制中心,于1960年2月9日正式成立,是空军指挥与控制发展部(俗称C?D?)的一部分。林肯实验室的哈罗德·O·柯蒂斯博士是国家空间监视控制中心的主任。
随着计划的逐步展开,到1960年,全国共有约70人参与作战。计划中军方人员占据了相当的规模,11名军官和1名高级士官被选为第一航空航天监视和控制中队的初始领导。最初的领导是从1960年11月7日开始进入“太空轨道”接受训练的。(1961年3月6日,“太空轨道”领导被分配到新中队。)
1960年末,美国空军副参谋长柯蒂斯·E·李梅将军决定,研发系统已经准备好投入使用。
到1960年,从全世界约150个传感器获得了观测结果,并向传感器和相关方发布了定期轨道预测。
“太空轨道”一直跟踪卫星和太空探测器直到1961年。
1961年7月1日,新中队在科罗拉多州斯普林斯市恩特空军基地的美国空军防空司令部投入使用,这是“诺拉德”太空探测和跟踪系统的一部分。第一中队指挥官是罗伯特·米勒上校。汉斯科姆基地的“太空轨道”组织承担了中队作战的后备角色。
米勒上校无视空军关于这一问题的规定,该条例明确规定,未保密的代号,如“太空轨道”,应为两个字(而代号,如“皇冠”,当时本身是保密的,应该只有一个词),防空司令部立即决定将“太空轨道”改名为“太空轨道”,自那以后,这个名字就一直存在了——尽管目前执行任务的第614航空航天作战中心的网站已经改成了两个词。614是加利福尼亚州范登堡空军基地联合空间作战中心的一部分。
美国国防部已经决定,美国空军应该开发一个用于跟踪卫星的指挥和控制系统,美国陆军和海军应该为此开发传感器。美国海军的发展在弗吉尼亚州的达尔格伦,美国陆军的项目在马里兰州的阿伯丁试验场进行。
米扎伊卡博士和沃尔博士已经列出了一系列可以跟踪卫星的设施清单,这些设施可以通过监测遥测或雷达跟踪卫星。后者主要是天文射电望远镜,配备了用于研究月球的雷达(例如,伯纳德·洛弗尔爵士指挥的英国约德雷尔银行天文台、戈登·佩丁吉尔博士指导的马萨诸塞州林肯实验室的磨石山,以及加州斯坦福研究所的雷达,由沃尔特·杰耶执导)。美国空军的两个雷达,一个在阿留申群岛的舍米亚岛,另一个在土耳其的迪亚巴克尔,被建造用来观察苏联的导弹发射,并且对卫星跟踪也很有价值。特立尼达的弹道导弹预警系统原型雷达也参加了。通常,从图拉塔姆(拜科努尔)发射新卫星的第一批雷达报告来自谢梅亚,从卡普斯汀亚尔发射新卫星的第一份雷达报告来自迪亚巴克尔。美国空军在德克萨斯州的拉雷多试验场和新泽西州莫尔斯敦的一台雷达也参与了这项工作。观测数据来自加拿大萨斯喀彻温省阿尔伯特亲王的加拿大皇家空军研究雷达。喷气推进实验室的戈德斯通设施对苏联太空探测器的无线电观测非常有帮助。
一般来说,观测是以时间、方位角和仰角(以及雷达测量的距离)的形式进行的,在某些情况下,如在金石,以天文形式(赤经和赤纬)进行观测,一些早期的观测非常原始,比如一份报告说一颗卫星从一颗可以辨认的恒星附近经过。
在极少数情况下,观察纯粹是口头的。例如,在加勒比海的船只、飞机和岛屿上的个人报告说,他们看到1957年“贝塔”号卫星的衰变,尽管有一架飞机能够提供详细的观测结果,因为“航海者”恰好在准确的时间完成了一次天体定位。
一些站点可以记录卫星传输的多普勒频移,或者在少数情况下,记录轨道物体反射的自身传输的多普勒频移。其中一个多普勒站点是位于马萨诸塞州比勒利卡的“太空轨道”多普勒场。通过这种技术获得的观测值是最接近空间站的时间。
海军计划的运作方式是美国海军太空司令部太空监视系统,现在由美国空军运营。陆军计划虽然利用多普勒技术获得了精确的跟踪结果,并向“太空轨道”提供了观测,但没有为部署提供资金。
空间指挥部空间监视系统对卫星跟踪的贡献之一是发明了一张显示两极的地球地图,这样就可以显示所有卫星的位置,包括极轨卫星。这是不可能的墨卡托或其他投影,没有显示整个地球。当然,地图在两极非常扭曲(北极是长地图的整个顶线),但事实证明这个概念非常有用。
光学传感器包括由史密森天体物理天文台为美国宇航局操作的12台“贝克·纳恩”卫星跟踪摄像机、由美国空军操作的3台“贝克·纳恩”摄像机和沃尔特·曼宁操作的帕特里克空军基地波士顿大学摄像机。
史密森天体物理天文台相机分别位于澳大利亚的伍默拉、佛罗里达州的朱蒂尔、新墨西哥州的风琴道、南非联邦的奥利凡茨方丹、西班牙的加的斯、日本的三鹰、印度的纳尼塔尔、秘鲁的阿雷基帕、伊朗的西拉斯、荷兰西印度群岛的库拉索岛、阿根廷的多洛雷斯别墅和夏威夷毛伊岛的哈雷卡拉。美国空军的摄像机分别在挪威的奥斯陆、加利福尼亚州的爱德华兹空军基地和智利的圣地亚哥。后来,美国空军的库存中又增加了两台摄像机——1961年,美国空军的一架被转移到加拿大阿尔伯塔省冷湖的加拿大皇家空军。
志愿的业余天文学家作为史密森天体物理天文台卫星观测小组的一部分也提供了观测结果。在众多志愿者中非常重要的是来自加利福尼亚州戴维斯市的亚瑟·S·伦纳德,他是加州萨克拉门托队的队长。
到1960年,“太空轨道”有大约150个协同传感器。“太空轨道”是美国唯一一个使用所有观测方法跟踪卫星的组织。
观测结果被记录在IBM的穿孔卡片上,以便计算机处理。所有未分类的观测每天都与马萨诸塞州剑桥的史密森尼天体物理观测站交换。
“太空轨道”与美国国家安全局、中情局外国导弹与空间分析中心以及美国空军情报总部哈里·霍尔曼少校保持着密切联系。
苏联的塔斯新闻社,总是及时宣布新的苏联卫星或太空探测器的发射,这是有帮助的,因此“太空轨道”可以自由讨论新的物体,而不必担心会损害消息来源。外国广播信息服务处提供了俄罗斯公告的翻译。
沃尔博士一直在用弗里登平方根计算器(当时最先进的机械计算器)手工计算所有的卫星星历表。
星历表的计算方法(详细记录在P·M·菲茨帕特里克先生和G·B·芬德利的1960年报告中)最初是由沃尔博士根据历史天文学方法开发的。
1958年8月下旬,“太空轨道”公司获得了第一台与剑桥研究中心IBM650联合使用的IBM610计算机。IBM610是一台非常原始的机器,它的编程是用插板(类似于1950年代早期用于IBM会计机器的插板)和穿孔纸带完成的。
新的国家空间监视控制中心大楼配备了一台IBM709,几个月后,又配备了一台IBM7090。新电脑的主要程序是由加州新港海滩福特汽车公司的航空营养部门完成的。沃尔夫公司也支持国家空间监视控制中心。
星历的计算是在一个叫做公告的地方发布的。公报列出了卫星的每一个赤道交叉点,并描述了这些交叉点之间的路径。“太空轨道”还提供了“视角”、高度和方位角,以便特定的传感器能够指向正确的方向来获取卫星。特殊版本的视角是为特定的地点量身定做的,例如陆军和海军传感器开发项目。在国家空间监视控制中心,这些计算由值班控制员传输。
“太空轨道”公司还发布了所有卫星的公开目录,其中包括那些已经不在轨道上的卫星,称为“卫星状况报告”,其中列出了每颗卫星的基本轨道要素。起初,这不到一页字。史密森天体物理观测站也发布了类似的文件,但1961年,美国宇航局戈达德太空飞行中心承担了两份报告的责任,将它们合并成一份文件。
1960年10月,乔治·韦斯特鲁姆为那些希望参加的国家空间监视控制中心人员提供了一个短期的大学水平的天体力学课程。
根据国际天文学联盟的国际协议,卫星和太空探测器最初以希腊字母命名,遵循星座中恒星的命名系统。发射年份包括在发射名称中,所以“斯普特尼克”1号是1957年的“阿尔法”。有效载荷被称为“阿尔法”1号,当已知的时候在“斯普特尼克”1号的例子中,最初并不清楚哪个是有效载荷,所以有效载荷变成了“阿尔法”2。其他部分也有编号,所以运载火箭通常是“阿尔法”2号。这24个希腊字母很快就被使用了,所以下一个序列开始于“阿尔法”,以此类推。到1962年,“贝塔”-派已经启动,很明显希腊字母系统将不再有效。此后,发射编号从1963-1开始,有效载荷通常为1963-1A等。
新的卫星或空间探测器一经发射,“太空轨道”就向主要传感器发出警报,并在它们到达时对其进行处理,迅速发布初步跟踪公告,并在大约24小时后更新该公告,当时已获得来自世界各地的更多观测结果。继续根据需要定期发布例行公报,以跟上不断变化的轨道,其中一些轨道在大气中衰减得相当快。当最后一次旋转发生时,由于很难预测准确的再入路径,又有一次活动。
国家空间监视控制中心有一个专用的房间,用作监控通信和获取观测结果的过滤中心。过滤中心有显示在轨卫星和衰变卫星的显示器,以及一个可以显示一颗卫星在地球上空运动的投影系统。这些显示器是由A/3C彼得·P·卡姆罗夫斯基设计的。该中心由值班控制员和他的助手负责。该中心由高级管制员1st-科特根据他早先作为美国空军地面观察团志愿成员的经验设计的(地面观察团的过滤中心又基于二战期间为跟踪纳粹飞机而开发的英国飞机跟踪中心)。
到1960年,值班分析员的职位确立了。一旦观测值减少,值班分析员就对其进行审查,并决定哪些轨道需要重新计算以使其更新。在新发射或衰变卫星的情况下,一名分析员专门处理该卫星的观测数据
与太空时代的许多其他活动一样,“太空轨道”行动经常涉及到做一些没有先例的事情。
不寻常的“太空轨道”运行。1959年1月2日,苏联发射了他们的第一个月球探测器“月球”1号(又名“美其塔”(梦))。加利福尼亚理工学院的戈德斯通网站获得了“太空轨道”的跟踪数据,证实了探测器已经飞向月球。柯蒂斯博士在向美国众议院一个委员会的报告中使用了这些数据的一个图。他的演讲显然是肯尼迪总统建立“阿波罗”计划(ApolloProgram,“阿波罗”计划:光耀历史的冷战大手笔)的影响因素之一。肯尼斯·E·基塞尔后来发表了一个关于轨道的“太空轨道”分析的项目。
在此期间,6594号航天试验翼正勇敢地试图实现“发现者”卫星计划的成功发射。从范登堡空军基地发射的卫星都在极轨道上。他们由位于帕洛阿尔托的6594号战机控制(后来是加利福尼亚州桑尼维尔的空军卫星控制设施)。科特中尉是“太空轨道”和6594号之间的联络官。前12次发射尝试都失败了;第一次成功的是“发现者”1号(1959年测试版)。开发承包商洛克希德公司赢得了他们的奖金,因为遥测显示卫星已进入轨道,但尽管进行了大量的太空跟踪和其他努力,它再也没有出现过。
到了这个时候,“太空轨道”已经与世界各地的许多传感器取得了联系。其中一次是在南极,与“国际地球物理年”有关。他们对“发现者”2号(1959年“伽马”)的90次观测中,有一次是从伯德站发出的,说卫星以2.25度的角度越过天顶左侧,意味着轨道倾角为89.9度,这份报告可能是迄今为止对卫星轨道倾角的唯一直接观测。
由于“发现者”卫星携带的有效载荷是由位于夏威夷的第6594航空航天试验联队的飞机脱离轨道并从降落伞上回收的,所以脱离轨道的时机至关重要。(“发现者”2号的有效载荷脱离轨道的尝试出现了严重错误:有效载荷降落在斯匹次卑尔根,而不是从太平洋上空坠落。它是由俄罗斯矿工发现的,很可能对俄罗斯情报部门和俄罗斯太空计划有很大帮助。后来,为了提高脱轨指令的准确性,轨道分析员阿尔马塔斯西蒙塔斯·西莫利·纳斯、劳伦斯·卡斯伯特或埃德·凯西会在最后一刻更新每个发现者的“太空轨道”星历表,并将更新发送到6594。第6594号卫星拥有全球跟踪站网络(包括阿拉斯加、夏威夷、塞舌尔、关岛和英国),用于指挥在轨控制卫星。然而,跟踪数据来自遥测监测,不如“太空轨道”数据精确,后者主要基于雷达和光学跟踪。
洛克希德公司决定对“发现者”11号(1960年的“德尔塔”)稍加注意。“太空轨道”充当了6594号飞船和史密森天体物理天文台之间的联络人,利用他们位于西班牙加的斯的“贝克修女”相机拍摄光线。这将为洛克希德公司提供有关轨道计算精度的宝贵信息。实验效果很好,没有重复。
“发现者”19号(1960年套)有一个称为“弥达斯”的有效载荷,这是后来成为国防支持计划的发展版本。空军决定对“弥达斯”轨道进行分类,这意味着“太空轨道”传感器观测也必须进行分类。由于没有安全的电传打字机或电话,这导致了马萨诸塞州康科德中心的戈登·佩丁吉尔博士和科特中尉之间在午夜秘密地进行数据传输。
可能是为了庆祝第一航空航天监视和控制中队的启动而无意中燃放了烟火。1961年6月29日,美国海军运输4A号卫星“奥米克龙”的“阿比斯塔”级发射台在到达轨道77分钟后,在06:08Z处爆炸加州萨克拉门托月球观察小组的伦纳德先生在早期的雷达观测中发现了许多碎片,这些碎片中只有几颗卫星预计会发射出去,于是他向“太空轨道”发出了警报。在接下来的几天里,这使“太空轨道”计划成为新中队的后备力量。劳伦斯·W·卡斯伯特、阿尔吉曼塔斯阿伊莫伦纳斯和埃德·凯西在卫星跟踪方面取得了里程碑式的成就,手工绘制了观测结果,并确定了296个碎片的轨道。、第1航空的轨道分析员也积极参与了这项成就。来自国家空间监视控制中心围栏的观测对跟踪碎片非常有帮助(国家空间监视控制中心最初拒绝发送“太空轨道”的单个观测数据,而是只发送轨道参数,但幸运的是,这一政策在1961年改变了)。
劳伦斯·莫里斯公司开发了一个轨道自动探测器程序,用于识别所有未知物体;这种方法奏效了,后来被称为“卡斯伯特-莫里斯算法”。由此产生的程序被称为“分裂、丢失和衰变”,随着随后的改进,它在太空卫星目录中发现了数千个物体。它仍然是空军不相关目标处理的天体动力学标准。
大多数“太空轨道”通信是通过电传打字机,或者在某些情况下,通过电话、邮件或信使进行的。
公告和视角最初是由通信办公室的飞行员手工打字,然后用电传打字机发送给所有参与的传感器。在无拘束胶带发明之前,电传打字机使用的是穿孔纸带。
最终,罗伊·诺里斯和科特中尉诱使IBM610为卫星通讯剪断了纸带,这样通信部门的飞行员就不必手工输入所有数据。这并不是IBM610设计的一部分,这对IBM人员来说是个惊喜。后来的计算机也会自动准备公告和观察角度数据带。
1961年,“太空轨道”计划系统被宣布投入使用,并被分配给新成立的第一航空航天监视和控制中队,作为“诺拉德”空间探测和跟踪系统的一部分。
“太空轨道”计划属于军事科研行动,自身没有行动序列。但是却与以下两个行动关系密切:
“太空轨道”计划是美国空军众多项目中的一个,美国空军的项目还有以下:
“太空轨道”计划行形成了一些有限的安全通信:一种有效的发送机密信息的方法是一对一次性键盘。这些便笺簿都是由两页纸组成的,上面的一页纸上有所有的字母和数字,一页大概有40行。最上面的纸是无碳纸。要使用这些表格,在最上面的表格上,每一个字母或数字一行一个圈出。这标志着第二张纸,上面所有的字母和数字都被打乱了。加密后的版本可以通过电传打字机或电话传送给接收者,接收者使用他匹配的一套一次性键盘,可以反转过程并阅读安全消息。
“太空轨道”后来采用的另一种方法是一台安全的电传打字机,它附有一个预先打孔的纸带。磁带用来弄乱每一个打出来的字母,然后用电传打字机线路另一端的反向程序解密。这个系统被用于与五角大楼的空军情报部门通信。后来有了更复杂的加密设备。
除了数据通信,“太空轨道”还发表了一系列技术报告。
“太空轨道”计划是唯一一个使用各种来源的观测数据的组织:雷达、光学、无线电和视觉。所有未分类的观测结果都与史密森天体物理观测站共享。
“太空轨道”计划是在“斯普特尼克”1号人造卫星发射后不久,在马萨诸塞州贝德福德的劳伦斯·G·汉斯科姆空军基地——的空军剑桥研究中心开始的。
1958-1961年“太空轨道”计划的个人,在美国空军国家博物馆档案馆的文件中被命名,如下所列,其中一些来自第二来源。没有已知的所有“太空轨道”人员的名册(包括发挥类似作用的“尼娜”号、“平塔”号和“圣玛利亚”号的船员名单)。
美国空军文职人员
1958年和1959年,E·L·伊顿是“太空轨道”计划的主管。罗伯特·M·斯莱文于1959年初成为“太空轨道”计划的主管。来自林肯实验室的哈罗德·O·柯蒂斯博士于1960年担任国家科学中心主任。GS-15比尔·莫顿是496L系统项目办公室的高级文职人员。
米扎伊卡博士和沃尔博士由罗伯特·查博特加入,他负责处理观察结果,由J·斯通和J·乔治协助。来自莱特帕特森空军基地的肯尼斯·E·基塞尔偶尔也会帮助“太空轨道”管理,但他的主要活动是在俄亥俄州进行卫星观测。杜安·S库利博士和卡尔南迪特后来加入了“太空轨道”的工作人员。
1958年12月,天文学家汉斯·比特·瓦克纳格尔博士从瑞士加入“太空轨道”。
威廉·德莱尼从1958年底到1959年年中负责轨道计算。其他在这段时间内担任轨道分析员的还有艾德·凯西、拉里·卡斯伯特、M·弗朗西斯、F·穆尔克恩和N·理查森。
拉塞尔·H·沃斯纳是国家空间监视控制中心计划和运营主管。
其他文职人员:哈罗德·莱昂斯、罗伊·诺里斯、约翰·马切恩、利奥·瑞安、安东尼·刘。
美国空军军官:
小维克托A.切尔巴克上校是ES系统项目办公室496L的初始项目总监;
小查尔斯·R·威尔斯少校曾任国家空间监视控制中心副司令。
在“太空轨道”的早期,美国空军中校尤金·E·达夫中校曾被租借到该项目(从1959年起,他在加利福尼亚州森尼维尔市第6594次航天试验联队担任“太空轨道”联络官)。
美国空军第一位长期受命的军官是1958年8月13日抵达美国的海军少尉劳伦斯·R·科特,他因其本科专业而被任命为天文学家。他负责计算美国宇航局“探索者”4号的轨道。后来,他是国家空间监视控制中心的高级控制官,他是第一位执行任务的军官,后来正式成为空军专业代码2025A(轨道分析员)和2035A(系统控制器)。
几天后,第一中尉阿尔格曼塔斯·西莫利纳斯成为第二名长期被派往“太空轨道”的军官。他的本科专业是工程学。他也是一名轨道分析员,1959年,在威廉·德莱尼离开后,他成为了规划部门的主管。
美国空军飞行员:
这些飞行员被分配到“太空轨道”,作为通信部门的一部分,从事数据处理,或在控制中心工作:
国家空间监视控制中心控制中心人员:
“太空轨道”第一航空干部(1960-1961):
“太空轨道”计划的承包商:
1960年,福特汽车公司的一个部门航空电子公司与“太空轨道”签订了一份合同,开发出预测衰变卫星轨道的改进方法,一个叫做螺旋衰变的计算机程序,以及为新大楼中的新计算机开发其他软件。路易斯·G·沃尔特斯博士、查尔斯·杰弗里·希尔顿、塞西尔·托马斯·“汤姆”·范·桑特、乔治·韦斯特罗姆、拉尔夫·席尼勒、珍妮·阿瑟诺、帕特丽夏·克罗辛和航空电子的琳达·伯格斯滕森都是对工作至关重要的合同员工。1959年10月1日,航空电子公司受聘对控制中心进行系统分析。有关“太空轨道”计划的这项和其他气动营养支持的详细报告,已在位于科罗拉多州科罗拉多州斯普林斯市的洛克希德·马丁公司办公室存档。报告的索引在美国空军国家博物馆。
另一个非常重要的群体是比尔·沃尔夫的沃尔夫研发公司(马萨诸塞州康科德)的员工,该公司从事编程工作,并签订了国家空间监视控制中心计算机操作合同,包括IBM7090大型机。巴罗森伯格是编程组的负责人,后来他们到科罗拉多州的Springs安装、修改和运行汉斯康姆在IBM7090上使用的程序集。
“太空轨道”是一个比较平庸的代号,用意非常直白,勿须过多解读。只是,本计划是更改后的代号,也就是说,并非是行动的最初目标。
【太阳星座月亮星座上升星座分别是什么意思?】
太阳星座是由春分点(春分日),即黄道零度起算的算法,十二个星座依次排列的顺序是白羊座、金牛座、双子座、巨蟹座、狮子座、处女座、天秤座、天蝎座、射手座、摩羯座、水瓶座、双鱼座。
月亮星座就是月亮视运动到达以农历春分为首的十二中气为交宫时刻的黄道十二宫的分点月的划分方法,其实质是真分点月的12个分段。
上升星座就是个人出生时东方地平线所在的星座,其变化取决于出生时间与地点。
扩展资料:
星座的起源
米索不达亚文明占星家为了方便研究及观测天上诸多恒星,人们把星空分为若干个区域,每一区就是一个星座。很难确切的说出人类是从何时开始有星座的概念的,这类天文知识远在有历史记载以前就被人们所领会。星座的名称则很可能来源于早期航海的水手。
不同地域的文明中,星座的起源可能完全不同,但是随着各文明的扩张和相互影响,星座的文化也包含了融合的过程。
—星座
—太阳星座
—月亮星座
—上升星座
航海星历表相关文章: